Software Tools for Digital Collections Management

Society of California Archivists
Annual General Meeting
April 12, 2013
Presenters

• Jackie Dooley, Program Officer at OCLC Research
 – workflows and tool overview

• Lauren Sorensen, Preservation Project Manager at BAVC
 – ffmpeg, ffprobe, framemd5

• Jenny Brice, Preservation Coordinator at BAVC
 – rsync

• Heather Yager, Archivist at California Academy of Sciences
 – archivematica, BagIt

• Susan Chesley Perry, Head of Digital Initiatives, UC Santa Cruz
 – Omeka

• Adrian Turner, Data Consultant, California Digital Library
 – ArchivesSpace

• ...you?
Take a stepwise approach to digital collections management.

It requires a suite of software tools, there is no out-of-the-box solution.

Add tools as you go, choose software that is easily-implemented and easily-replaced.
Demystifying Born Digital

OCLC Research’s *First Steps* reports

Jackie Dooley
Program Officer
OCLC Research

Society of California Archivists
Berkeley, 13 April 2013
"Make things as simple as possible, but not simpler."

--Albert Einstein
Taking Our Pulse: The OCLC Research Survey of Special Collections and Archives

Jackie M. Dooley
Program Officer
Katherine Luce
Research Intern
OCLC Research

Top education and training needs

1. Born-digital materials: 83%

2. Information technology: 65%

3. Intellectual property: 56%

4. Cataloging and metadata: 51%
Born-digital materials are:

- Undercollected
- Undercounted
- Undermanaged
- Unpreserved
- Inaccessible

American Heritage Center
In response, we launched an OCLC Research project ...
This project focuses on enhancing the effective management of born-digital materials as they intersect with special collections and archives practices in research libraries.

Building on Ricky Erway's essay, *Defining “Born Digital”* (pdf: 35.1K/4 pp.), the outcomes of this project will be a series of brief reports on the following issues:

1. Technical baby steps for those who have acquired born-digital materials on physical media but haven't yet begun dealing with them due to lack of expertise, time, fear, money, etc. This is intended to help curators start getting materials under control without doing any harm to the originals.

2. A call for a network of hubs to enable cost-effective outsourcing of the transfer of various types of physical media, particularly obsolete formats. We seek to reduce the need for everyone to figure everything out on their own, and instead set up a network of expert sites that have the necessary equipment and experience.

3. The skills and experience that archivists bring to the management of any type of born-digital content that might find its way into a research library, whether or not it would be considered "archives" or etc.
Suite of “reportlets”

– Outline **first steps** to begin managing removable physical media (1st & 3rd reports)   

– Advocate for collaboration in converting **obsolete media** (2nd)

– Articulate the relevant **skills and expertise** of archivists (4th)

– Describe how these pertain to various types of born-digital material and how **special collections** and archives **intersect with “born digital”** (5th)
You’ve Got to Walk Before You Can Run: First Steps for Managing Born-Digital Content Received on Physical Media

Ricky Erway
Senior Program Officer
OCLC Research

(OCLC)

A publication of OCLC Research

First Steps for Managing Born-Digital Physical Media

(Published August 2012)
Intent of First Steps

• Knowing what you have (i.e., do an inventory) and taking some simple technical steps can *allay the fear factor*.

• Archivist may have to begin alone without help from *IT staff*.

• Having taken first steps, it’s then *easier to continue learning*.

• Seek *confidence building* rather than overwhelming novices with complex information and unattainable procedures.

• Roughly the *same steps* can apply as *new material* is received.
Part 1: Collections management first steps

- **Inventory** what you have
 - Types & quantities of physical media
 - File formats
 - Estimated number of gigabytes

- **Prioritize** materials for processing
 - Anticipated level/nature of use
 - Level of significance/uniqueness
 - Potential loss due to age or type of media
 - Unique content not replicated elsewhere
Part 2: Technical Steps for Readable Media

1. Use a “clean” computer.
2. Use a write blocker.
3. *Insert source media.* Do not attempt to open any files.
4. Create a *disk directory.*
5. *Copy* files from media to the directory. Consider copying as a *disk image.*
6. Generate a *copy of the directory.*
7. Generate and record a *checksum.*
8. Create a *readme file.*
9. Copy the directory to *trustworthy archival storage.*
10. Return the original *physical media to storage.*
11. Create or update any *associated descriptive tool(s).*
Walk This Way:
Detailed Steps for Transferring Born-Digital Content from Media You Can Read In-house

Julianna Barrera-Gomez
OCLC Diversity Fellow
Ricky Erway
Senior Program Officer
OCLC Research

Coming in April!
Detailed Steps (Table of contents, pt. 1)

Introduction

Documenting the Project

Preparing the Workstation
 * Set up a “Clean” Workstation
 * Install Write Blockers
 * Connect the Source Media

Transferring the Data
 * Copy the Files or Create a Disk Image
 * Check for Viruses
 * Record the File Directory
 * Run Checksums or Hashes
 Generate an Accession Record
Detailed Steps (Table of contents, pt. 2)

Securing Project Files
 Prepare for Storage
 * Transfer to a Secure Location
 * Store or Deaccession the Source Media

Exploring the Content
 Validate File Types
 Assess Content
 * Update Associated Collection Information

Next Steps

Sample Workflow

Additional Resources
Comparison #1: A clean workstation

Introduction

Documenting the Project

Preparing the Workstation

* Set up a “Clean” Workstation
* Install Write Blockers
* Connect the Source Media

Transferring the Data

* Copy the Files or Create a Disk Image
* Check for Viruses
* Record the File Directory
* Run Checksums or Hashes
 Generate an Accession Record
First Steps: Clean workstation

1. Use a “clean” computer (a dedicated computer that is regularly scanned with up-to-date antivirus software and that is not used for online activities that may introduce viruses or used for other work that might be affected by viruses introduced when accessing media).
Detailed Steps: Preparing the Workstation

Prepare a dedicated workstation to connect to the source media and to use throughout the project. Start with a single type of media from a collection to aid in efficiency and in keeping track of your materials and metadata.

Set up a “Clean” Workstation

Level of Difficulty: Easy to Moderate

Desirability: Mandatory

Use a non-networked computer that is regularly scanned for viruses. This workstation serves the same purpose as the quarantine room many archives use for new acquisitions that have not yet been reviewed for mold, insects, etc. Keeping this computer virus-free is critical. Virus check your workstation using your institution’s current virus protection system before beginning to copy materials, and plan to keep the software up to date and the workstation regularly scanned. See the [Check for Viruses](#) step for software options.

You will need the relevant peripherals such as cables, drives or ports for transferring digital files from the source media. You may need particular software or drivers to access the hardware—consult with your IT department or other qualified technicians to set this up appropriately.

Do not open files on your source media; it could change the files’ metadata (such as creator and date) or the content. We strongly recommend that you use a write-blocker (software or hardware) to prevent your actions on the workstation from altering the files on your source media.

Further Resources:

“Digital Curation Workstation,” *Maryland Institute for the Digital Humanities*

http://mith.umd.edu/digital-curation-workstation An example of a workstation created by MITH.
Comparison #2: Checksums

Introduction

Documenting the Project

Preparing the Workstation
* Set up a “Clean” Workstation
* Install Write Blockers
* Connect the Source Media

Transferring the Data
* Copy the Files or Create a Disk Image
* Check for Viruses
* Record the File Directory

* Run Checksums or Hashes

Generate an Accession Record
First Steps: Checksums

7. Generate and record a checksum (a unique value based on the contents of a file) on the disk image. Alternatively, if you copied the files instead of copying a disk image, generate and record a checksum on each file in the subdirectory.
Detailed Steps: Run Checksums or Hashes

Level of Difficulty: Easy to Complex

Desirability: Highly Recommended

A checksum, or hash, is a unique value based on the contents of a file and is generated by specific algorithms (e.g., MD5 or SHA-256). Comparison of checksums generated from the same file at different times identifies whether and when the file has changed. Creating checksums is not difficult and may be done during several processes described earlier (such as creating a disk image, generating a directory list, or using the Duke Data Accessioner). It is very easy to create a hash for a single file and then to compare that hash to one generated for another copy of the file. An automated technique is necessary, however, when processing a large number of files.

It is important to note that while a changed checksum can alert a repository to the fact that something in a file or folder has changed, it cannot indicate what exactly has changed, nor can it reverse the change. Regularly hashing the file or image you have copied and checking those new hashes against the hashes made at the time of the transfer should be part of your digital curation workflow. During the lifecycle of your digital collections you will need to periodically verify the checksums to ensure that files remain unchanged.
Detailed Steps: Checksums, cont.

Disk imaging or Disk copying tools that incorporate checksums (see the Copy the Files or Create a Disk Image section for more details on these tools):

BitCurator: http://www.bitcurator.net/

FTK Imager (Forensic ToolKit Imager): http://accessdata.com/support/adownloads

Duke Data Accessioner: http://library.duke.edu/uarchives/about/tools/data-accessioner.html

File directory printing tools that incorporate checksums (see the Record the File Directory section for more details on these tools):

NARA File Analyzer and Metadata Harvester: https://github.com/usnationalarchives/File-Analyzer

Collection management tools that incorporate checksums:

Archivematica: https://www.archivematica.org/wiki/Main_Page

From the website: “A free and open-source digital preservation system that is designed to maintain standards-based, long-term access to collections of digital objects. Archivematica uses a micro-services design pattern to provide an integrated suite of software tools that allows users to process digital objects from ingest to access in compliance with the ISO-OAIS functional model.” Developed under a collaboration led by Artefactual Systems and the City of Vancouver Archives.
Detailed Steps: Checksums, cont.

From the website: “The Workbench helps archivists manage files before they are stored in an institutional repository or dark archive. As the files are selected, arranged, and described, a METS file is generated by the software that documents these processes. In addition, checksums and UUIDs are generated for each object and MODS descriptive metadata elements can be mapped to individual objects and folders.” Developed at the University of North Carolina, Chapel Hill.

Standalone checksum tools:
Jacksum: http://www.jonelo.de/java/jacksum/
Md5summer: http://www.md5summer.org
Md5deep: http://md5deep.sourceforge.net, command line tool that can also be used as a directory printer

Further Resources:
“Checksum Verification Tools: Guest Post by Carol Kussmann” Practical E-Records http://e-records.chrisprom.com/checksum-verification-tools/ (accessed December 2012) This blog maintained by Christopher Prom reviewed five checksum generating and verification tools.
First Steps
http://www.oclc.org/research/publications/library/2012/2012-06r.html

Detailed Steps
Coming in April!

Demystifying Born Digital
http://www.oclc.org/research/activities/borndigital.html

OCLC Research
http://www.oclc.org/research.html
Thank you!

Jackie Dooley
dooleyj@oclc.org
FFmpeg
http://ffmpeg.org/

open source tool for digital audiovisual materials
what is BAVC?
what is FFmpeg?
how does BAVC use FFmpeg?

what does BAVC Preservation department do?
Video digitization
Collection assessment & preservation planning
Grant-funding projects (NEH, DHC)

what is ffmpeg?
http://www.ffmpeg.org/

how does BAVC use ffmpeg?
re-wrapping, framemd5, ffprobe, within scripts w/archives friendly technologists (examples: transcoding and slate attachments)
what is a script?

Scripts (Wikipedia):

“programs written for a software environment that automate the execution of tasks which could alternatively be executed one-by-one by a human operator. Environments that can be automated through scripting include software applications, web pages within a web browser, the shells of operating systems (OS)...”
ffmpeg resources:
- framemd5 (utilty within ffmpeg) article (also in most recent IASA journal):
- @mistydemeo and @dericed notes from workshop at AMIA 2012:
 https://github.com/mistydemoeo/ffmpeg4archivists/

- join Open Source committee of AMIA (Association of Moving Image Archivists)
- follow #ffmpeg #digitalpreservation on Twitter
- on April 19, follow #curatecampavpres

command line / code / scripting languages:
- Codeacademy: http://www.codecademy.com/#!/exercises/0
- Participate in code4lib: http://www.code4lib.org/
- Reach out personally to archives & librarian friendly technologists / coders / developers!
Rsync

• File transfer tool
• Synchronization tool
• For Unix and “Unix like systems”. (Linux, Ubuntu, Windows, Mac OS)
How does it work?

• Compares files to be transferred to files in the destination, and only copies differences.

• By default, compares file size and date modified to detect differences.

• As data is being transferred, runs checksums on blocks of data and on whole file. Where checksums don’t match up, data is transferred.
Why not just copy and paste?

- Checksums!
- Speed!
- Simplicity!
Applications for Digital Preservation

• How we use Rsync
• Replication: creating multiple copies of files while protecting against data corruption.
• Backing up work during digitization workflows
Understanding directory paths

- `cd ..`
- `ls`
Syntax

• Transferring files between local drives:
 \texttt{rsync [options] [src] [destination]}

• Transferring files from local to remote secure server using ssh:
 \texttt{rsync [options] [src] [user@]host:[dest]}

• Transferring files from remote secure server to local drive:
 \texttt{rsync [options] [user@]host:[src] [dest]}

• Trailing slash: copies only the contents of the directory, does not make a new folder in the destination
Options

• --archive
 --recursive (recurse into directory)
• --links (copy symlinks as symlinks)
• --devices (preserve device files)
• --specials (preserve special files)
• --times (preserve times)
• --perms (preserve permissions)
• --group (preserve group)
• --owner (preserve owner)
More Options

• --verbose (--vv)
• --progress
• --checksum
• | tee [log/file/path filename.txt]
• --dry-run (perform a trial run with no changes made)
• --itemize-changes (output a change summary for all updates)
Resources

• Rsync on wikipedia: http://en.wikipedia.org/wiki/Rsync
• Grsync: http://www.opbyte.it/grsync/
• Rsync: http://rsync.samba.org/
• Rsync Man: http://ss64.com/bash/rsync.html
Heather Yager

Archivist and Digital Collections Manager, California Academy of Sciences
Digital objects are just like physical objects...

- Are subject to deterioration due to bit rot and file corruption.
- Are subject to destruction due to failure of storage media.
- Are subject to loss due to human error.
…but better!

• Just kidding!
• But, digital objects do allow us to automate some storage, conservation, and preservation tasks.
The first step: inventory and ID

• By collecting an inventory and basic identifying information upon receipt of a digital object, you can facilitate checking, re-checking, managing, and storing that object throughout its life.

• ...sound familiar?
BagIt specification (IETF, LOC, CDL)

• A hierarchical file packaging format ideal for file transfer

• “Bag it and tag it”

• Bag: the bits + the tags
 – The bits: your digital objects
 – The tags: a manifest listing every file in the bag, along with its corresponding checksum.

• Checksums can be used to verify bag contents over time, after a move, after file restore, etc.
Bagger Tool (LOC, NDIIPP)

• Open source software that provides a GUI for creating bags according to the BagIt standard

• Bagger does: generate a file inventory and generate checksums for each file.

• Bagger does not: perform ongoing fixity checks, format validation, etc. It provides the raw materials for these processes.
When to bag?

• Bag for transfer, if you must move large digital collections (facilitates verification post-move).
• Bag if you have a processing backlog (provides stable environment for digital objects waiting to be processed).
• Bag for preservation, in a repository context (separate from your access copies).
• Start bagging today!
More information...

- Anyone in the audience?
Archivematica (Artefactual)

• “Archivematica is a free and open-source digital preservation system that is designed to maintain standards-based, long-term access to collections of digital objects.”

• “An integrated suite of software tools that allows users to process digital objects from ingest to access in compliance with the ISO-OAIS functional model.”

• Incorporates BagIt specification, along with METS, PREMIS, Dublin Core, and other best-practice standards
archivematica (Artefactual)

• “The primary function of Archivematica is to process digital transfers (accessioned digital objects), turn them into SIPs (submission information packages), apply format policies and create high-quality, repository-independent Archival Information Packages (AIPs) using METS, PREMIS, and BagIt.

• Also can normalize/convert some file formats and automatically upload access copies to a variety of content management systems (Dspace, ContentDM, ICA-ATOM)
archivematica does...

• automatically generate technical metadata, including UUIDs and inventories which preserve original order (and more!).

• move digital objects through an automated ingest process into a stable storage environment (using BagIt).

• allow for archival appraisal during this automated process.

• generate access copies of digital files and facilitate upload to external web publishing platforms.
archivematica does not...

• Publish digital content to the web (but it can communicate with software that does).
• Provide an interface for series/subseries-level archival description or a mechanism for generating finding aids (but it can communicate with software that does).
• Replace archivists! It is a tool we can use to store and monitor our digital artifacts in a stable environment.
More information...

- https://www.archivematica.org/
- http://www.artefactual.com/
- Anyone in the audience?
Software Tools for Digital Collections Management

Society of California Archivists AGM
April 13, 2013
Sue Chesley Perry, UC Santa Cruz
Advantages

- Dublin Core Metadata
- Customizable Themes
- Open Source, LAMP-based
- Omeka.net available for hosting
• Exhibit Builder
• User Contributions
• Creative Commons Chooser
• User Tagging
• User Comments
• Solr Search
• Neatline: Timeline/Mapping
Drawbacks

• Limited support for complex objects
• Limited batch-level processing
• Curation of user content and comments can be onerous
What’s Next?

• Curator’s Dashboard

Questions?

Sue Chesley Perry
chesley@ucsc.edu
Session #13: Software Tools for Digital Collections Management

Adrian Turner, California Digital Library

Society of California Archivists | 2013 Annual General Meeting | Berkeley, CA
ArchivesSpace: The Project

• A project funded by the Andrew W Mellon Foundation for building a “next generation” archives management tool

• A community effort, led by the libraries of New York University, the University of Illinois at Urbana-Champaign, and the University of California, San Diego

• The development of a sustainable partnership and community to support and foster the growth of the software
Project Team

- **Steering Group:** Luc Declerck, David Millman, Beth Sandore, with Robin Dale

- **Technical Architect:** Mark Matienzo

- **Development Manager:** Katherine Kott

- **Stakeholder Team:** Mark Matienzo (Product Owner), Chris Prom, Kyle Rimkus, Scott Schwartz, Brad Westbrook (Archivists/Business Analysts), Joe Pawletko (Technical Advisor)

- **Development Team (Hudson Molonglo):** James Bullen, Mark Triggs, Payten Giles, Brian Hoffman

- **Testing and Release Team:** Sai Tadikonda, Brian Tingle, Adrian Turner (CDL); with Hudson Molonglo, Mark Matienzo, and Katherine Kott

- **Migration Team:** Joe Pawletko (NYU), Nathan Stevens (AT), Chris Prom (Archon) plus Stakeholders and UIUC programmers
Functional Overview
Functional Overview

= ArchivesSpace
Functional Overview

archivists' toolkit

for archivists by archivists

ARCHON
UNIVERSITY OF ILLINOIS

+ =

ArchiTron

archival management system

software that provides integrated support for the archival workflow, including appraisal, accessioning, description, arrangement, publication of finding aids, collection management, and preservation

Functional Overview

Digital Asset Management System?
Functional Overview

- Supports creation and management of metadata for digital objects
- *Does not* really support management of content files for digital objects
Welcome to ArchivesSpace
Your friendly archives management tool.

v0.4.2-1a41535ce

Home Page
Welcome to ArchivesSpace
Your friendly archives management tool.

Primary Modules

Home Page
Welcome to ArchivesSpace

Your friendly archives management tool.

Home Page
Accessions
Accessions
Accessions

Related Resources
- Accession: Gene Anthony Summer of Love Photograph Collection

Agent Links
- Role: Creator
- Relator: Photographer
- Agent: Anthony, Gene

Subjects
- Subject: Nineteen sixties--Social aspects--California--San Francisco--Photographs
- Subject: Hippies--California--San Francisco--Photographs
- Subject: Haight-Ashbury (San Francisco, Calif.)--Pictorial works

External Documents

Rights Statements

Deaccessions
Resources
Original large-format photographs, most of the images of which are reproduced in Anthony's book Summer of Love: Haight-Ashbury at Its Highest (published in 1990). Images document people, places, events and street scenes associated with the counter-culture movement of the mid- to late 1960s in the San Francisco Bay Area, especially as evidenced in the Haight-Ashbury district. Arrangement

Most of the images in the collection are reproduced in Anthony's book "The Summer of Love: Haight-Ashbury at Its Highest."
Label: Scope and Content
Type: Scope and Contents

Publish?

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original large-format photographs, most of the images of which are reproduced in Anthony's book Summer of Love: Haight-Ashbury at Its Highest (published in 1980). Images document people, places, events and street scenes associated with the counter-culture movement of the mid- to late 1960s. The images are also useful as visual evidence of the era.</td>
</tr>
</tbody>
</table>

Sub Notes

<table>
<thead>
<tr>
<th>Label</th>
<th>Arrangement</th>
</tr>
</thead>
</table>

Publish?

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Categories</td>
</tr>
</tbody>
</table>

Wrap with:

- blockquote
- date
- function
- occupation
- subject
- emph
- corname
- persname
- fnamename
- geogname
- genref orm
- title
- ref
- extref
[The Charlatans performing in front of banner titled “Summer of Love”. Golden Gate Park, June 21, 1967.]
Resources
Resources
Digital Objects
File Versions

<table>
<thead>
<tr>
<th>File URI</th>
<th>ts/AGM_2013/2013%20program.pdf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publish?</td>
<td>True</td>
</tr>
<tr>
<td>Use Statement</td>
<td>Text-Only-Edited</td>
</tr>
<tr>
<td>XLink Activate Attribute</td>
<td></td>
</tr>
<tr>
<td>XLink Show Attribute</td>
<td></td>
</tr>
<tr>
<td>File Format Name</td>
<td>pdf</td>
</tr>
<tr>
<td>File Format Version</td>
<td></td>
</tr>
<tr>
<td>File Size (Bytes)</td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>Checksum Method</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File URI</th>
<th>ts/AGM_2013/2013%20program.gif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publish?</td>
<td>True</td>
</tr>
<tr>
<td>Use Statement</td>
<td>Image-Thumbnail</td>
</tr>
<tr>
<td>XLink Activate Attribute</td>
<td></td>
</tr>
<tr>
<td>XLink Show Attribute</td>
<td></td>
</tr>
<tr>
<td>File Format Name</td>
<td></td>
</tr>
<tr>
<td>File Format Version</td>
<td></td>
</tr>
<tr>
<td>File Size (Bytes)</td>
<td></td>
</tr>
</tbody>
</table>
Digital Objects
Scanning the Horizon conference program

Basic Information

Title: Scanning the Horizon conference program
Identifier: ark:/13030/t51b69:976/
Publish? : True
Level : work
Type : text
Language : English
Restrictions? : False

File Versions

ls/AGM_2013/2013%20program.pdf
Subjects
Agents
Welcome to ArchivesSpace.

Find what you're looking for:

Search the Archive Search

Content Here

Something here...

Something here...

Something else...

Some other information goes here.
Public Interface
Finding Aid to the Gene Anthony Summer of Love Photograph Collection

Summary

Identifier: BANC PIC 2001.196--B
Author: David Patacchi and Chris McDonald
Date: 2013
Description Rules: dcmi
Language: english

Extents

84 photographic prints (part)

Subjects

- Hippies--California--San Francisco--Photographs
- Nineteen sixties--Social aspects--California--San Francisco--Photographs
- Haight-Ashbury (San Francisco, Calif.)--Pictorial works
- Nineteen sixty-seven, A.D.--Social aspects--California--San Francisco--Photographs
- Golden Gate Park (San Francisco, Calif.)--Pictorial works
- San Francisco (Calif.)--Pictorial works
- Social life and customs--Pictorial works

Components

- 84 photographic prints (part)
Technical Framework

- Open-source code base
- Separate user interface & back end
- REST service interface & documented API
- Frameworks for rapid development
 - Sinatra
 - Ruby on Rails
 - Twitter Bootstrap
- Selected technologies
 - JRuby
 - Java virtual machine
 - Lucene and Solr
 - Relational databases
- Multi-tenant deployments
Development Plan: July 2012-June 2013

- Basic front & back end infrastructure (July/Aug)
- API, record edit, authentication, general import/export (Sept/Oct)
- Workflow, search, EAD import/export (Nov/Dec)
- All required import/export, UI templating & customization (Jan/Feb)
- Repository management workflow, user management workflow, reporting (Mar/Apr)
- Full application testing, beta release (May/June)
ArchivesSpace

Project Partners:
New York University Libraries
University of California, San Diego Library
University of Illinois at Urbana-Champaign Library

About LYRASIS
LYRASIS partners with members to create, access and manage information with special emphasis on digital content, while building and sustaining collaboration, enhancing operations and technology, and increasing buying power. For more information, please visit www.lyrasis.org.

Become a member of ArchivesSpace

Become a member of Archives Space, the next-generation open source archives management software, and help create a tool that will be sustainable and valuable for years to come.

Building on Archon and Archivists' Toolkit, Archives Space is an open source software solution for archives management with an eye towards the future. With well-established membership and governance models, Archives Space goes beyond the status quo, creating a community that supports and enhances the tool—a member community invested in its long-term viability and success.

ArchivesSpace has been developed by a partnership among the New York University Libraries, the University of California, San Diego Library, and the University of Illinois at Urbana-Champaign Library, with support from the Andrew W. Mellon Foundation. ArchivesSpace and its organizational home, LYRASIS, bring a strong commitment to service and support for members, and to ensuring vital member participation in governance and open source development.

ArchivesSpace is built for archivists. Membership ensures that this important and vital tool continues to serve the archives community.
Fliers available up front; see also ArchivesSpace website.
Test and Evaluate the Software

1) Use our hosted “sandbox” instance of the software

2) DIY: Install the software, and run a locally hosted instance

http://www.archivesspace.org/get-involved
References

ArchivesSpace website
http://www.archivesspace.org/

ArchivesSpace Google Group
http://groups.google.com/group/archivesspace/