Beyond “This material is unprocessed”

MINIMALLY DESCRIBING AND PROCESSING BORN DIGITAL COLLECTIONS

PRESENTED BY:
LAURA UGLEAN JACKSON, ASSISTANT UNIVERSITY ARCHIVIST, UC IRVINE
Description
+
Min. Processing
My presentation...

1) Experience minimally processing Hillis Miller born digital files
2) What I learned
3) Born Digital Processing Framework Group
J. Hillis Miller

- UCI faculty member
- Papers part of critical theory collections
The UCI Virtual Reading Room
According to the documentation:

2011
Collection acquired. Consists of 400+ floppy disks and 1 hard drive
11 gigabytes total

2012
Disk images created and ingested to preservation repository

2014
Critical Theory Archivist processed physical components
Appraised born digital files, determined what to keep
Created access copies of the “to keep” materials
60-80% of collection had access copies

2016: Me
Richard Rorty Files in VRR

- 1027 files arranged in 8 subseries
- Item level processing
- Each file has metadata/description
Mark Poster Files in VRR

- 1 GB of material
- Divided into subseries
- Within subseries, contains zip files with the files
- Description includes CSV files containing the file names within zip files
An Idea for a Plan

ALL the files

List of all file names and corresponding subfolders

Attached to finding aid

Into the Virtual Reading Room
Files organized in subfolders, by digital object number (i.e. original disk media)
Estimated processing hours (refer to chart in Section 4.5 of the processing manual). Comment on condition (i.e. barriers to access).

! Not applicable to born digital!

How will you organize the collection? Is there any existing meaningful order? What series will you use?

Born digital files are organized by digital object number, which corresponds to the piece of digital media that they came in on. This organization will be maintained. There will only be one series for born digital materials. If the collection receives a lot of use, it may be beneficial to arrange the files differently. Time, and patrons, will tell.

<table>
<thead>
<tr>
<th>Processing Level</th>
<th>Component Level</th>
<th>Title</th>
<th>Description</th>
<th>Arrangement</th>
<th>Preservation</th>
<th>Appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Series</td>
<td>Born Digital Materials</td>
<td>Consolidate only the “preservation” folders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change folder names (remove the word “preservation”)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Determine which folders have nothing in them (create a print of the access copies folder, examine that)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delete empty folders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Create inventory of file names corresponding to folder name/digital object number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decide if you want to zip one large folder, or one for floppies, one for each hard drive—thinking one for the file inventory, one for use.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uh oh...

- Only 500 MB converted to access copies.
 - Realized after segregating the folders that held the access copies.
- Contained correspondence, which has a donor-imposed 25 year restriction.

Physical Description: 11.8 Gigabytes

Scope and Content Summary

The J. Hillis Miller papers have an unprocessed digital component not yet available to researchers. The electronic content primarily consists of drafts, correspondence, photographs, and notes. Many documents are duplicated in the analog collection accessible in the Special Collections and Archives Reading Room.
Lessons Learned

- Minimally processing born digital materials ≠ minimal effort
- What does processing even mean in a born digital landscape?
- Documentation may not be complete, needs to be clearer
- Help is needed!
Born Digital Processing Framework

- 9 archivists
- Came from the Born Digital Archiving eXchange Unconference at Stanford

Survey the collection
Create processing plan
Rehouse physical media if necessary
Decision - do you keep physical media or not?
Assign identifier to physical media
Photograph/document physical media
Consult collection materials (i.e. deed of gift, digital material survey, etc)
PII risk assessment
Create file directory list (file-level metadata)
Perform file format analysis
Identify deleted/temporary/system files
Image media (but is this more of an acquisition task?)
Scan for PII
Remove or otherwise segregate PII that is found
Identify and describe restrictions based on PII found
Identify duplicate content
Delete (or otherwise identify) duplicate content
Determine volume of materials (in M/G/T/P bytes)
Virus scan
Describe content at appropriate level
Add description to a finding aid (what kind of description)?
Determine arrangement
Determine level of description
Arrange materials intellectually
Understand correlation between any analog/physical material
Arrange files according to intellectual decisions
Extract descriptive metadata
Weed/separate material that doesn’t fit collecting scope
Extract technical metadata
Record technical metadata
Record administrative metadata
Make preservation decisions - how will files be made available?
Determine which files need to be migrated
Migrate materials in need of migration
Create a directory list
For each activity (e.g. create file directory list) decide the following:

1. Where in the lifecycle it falls, e.g. description, preservation, wrap up work
2. If it should be included in min. processing requirements
3. If source of the content affects the activity
4. If format of content affects the activity
5. How important the task is to the workflow
Thank you!

and feel free to contact me:
lugleanj@uci.edu
UCSF Digital Collections
Migrating to Nuxeo/Calisphere

Kelsi Evans, Project Archivist
UCSF Archives
kelsi.evans@ucsf.edu
Edit Item #3234: "University of Califor...

Dublin Core

The Dublin Core metadata element set is common to all Omeka records, including items, files, and collections. For more information see, http://dublincore.org/documents/dces/.

Title
A name given to the resource

University of California College of Dentistry “Earthquake Class” of 1906

Use HTML □

Subject
The topic of the resource

Use HTML □

Description
An account of the resource

UC Affiliated Colleges, College of Dentistry / Dental Department class of 1906. The class graduated after the San Francisco earthquake of 1906.

Use HTML □

Creator
An entity primarily responsible for making the resource
Title:
Meiji no kusuri no kōkoku
Translated Title:
drug advertisement given to Meiji-za theatre

Creator/Contributor:
Toyohara, Kunichika, 1835-1900, Artist

Abstract:
a drug advertisement

Date:
1897

Subject:
Advertising Japan History
Drugs Japan
Japan
Toyohara, Kunichika, 1835-1900

Type:
triptych
woodblock print
Ukiyo-e
advertisement

Physical Description:
35.8 x 72.7 cm

Language:
Japanese

Identifier:
ucsf_p084

Origin:
Japan

Collection:
UCSF Japanese Woodblock Print Collection

Contributing Institution:
UC San Francisco, Special Collections
The deeper you look, the more you'll discover.

Search the collections

Calisphere is a gateway to digital collections from California's great libraries, archives, and museums. Discover over 750,000 images, texts, and recordings—and counting.
BERTRAM KATZUNG PLANTING FLOWERS ON CHAUNCEY LEAKE DAY

Dublin Core

Title
Bertram Katzung planting flowers on Chauncey Leake Day

Description
Bertram Katzung planting flowers on UCSF Chauncey Leake Day, June 2, 1981, in front of the Medical Sciences Building

Source
Photograph collection, Chauncey Leake Day

Publisher
Regents of the University of California

Date
1981-06-02

Contributor
UCSF Archives and Special Collections

Rights
Regents of the University of California

Format
Photographic print

Type
Image

Identifier
photocoll_chaunceyleakeday1981_katzung

Files
San Francisco General Hospital Historical Archives

Keeping Our History

The Archives is the final repository for records of enduring value created at SFGH.
Making the Move to Nuxeo

- Unifies collections
- Increases searchability
- Better file management
- CDL support

Aerobics class at Millberry Union, 1982, UCSF Photograph Collection

UCSF School of Medicine picnic, 1959, UCSF Photograph Collection
Implementing the System

- File migration

Biomechanics Laboratory presentation, 1957, UCSF Photograph Collection

UCSF Library computer, 1984, UCSF Photograph Collection
Implementing the System

- Metadata cleanup

Library staff member Phyllis Gross in UCSF Library Current Journals area, 1958, UCSF Photograph Collection

Library staff member Charles Stuckey at card catalog, 1969, UCSF Photograph Collection
Thank you!
At UCSF we **migrated our digital collections** from a few different locally-managed sites, including an Omeka instance, to Nuxeo/Calisphere.

In this talk, I'll go over the **considerations that went into the decision** to migrate our material and discuss some of the major issues we had to work through in the initial phases of the migration. My colleague David Krah will go into more depth into some of our current projects and how our tools and processes have continued to evolve.

UCSF Archives set up an **Omeka instance in 2008** to serve digitized material to the public. If you are unfamiliar with Omeka, it is “free, flexible, and open source web-publishing platform for the display of library, museum, archives, and scholarly collections and exhibitions.” The **focus of the platform is really display and web-publishing**, less on digital asset management, and we’ll come back to that in a minute.

In addition to the Omeka instance, we also had some sites that I’m going to call **project sites**. These were basically created to serve one collection and were connected with a funded project. One of these was the **Japanese Woodblock Print Collection**.

Around 2014 we began evaluating the new system being offered by CDL, Nuxeo backend with public display on the new Calisphere.

We were frankly eager to try a new system because the **limitations of our Omeka instance** and other sites were becoming clearer and clearer, especially as we started undertaking more large-scale digitization projects and our grants more regularly included some sort of digitization component.

To highlight a few of the limitations – **Omeka is open source**, which means there is a robust user community which can be great...but to be part of that, you really need staff with some programming and development expertise or at least the time and energy to devote to developing those skills. We just didn’t really have this, so our
instance was just the bare bones, which has limited search functionality and not the best user interface.

[show page with limited images, and no space for complex objects, or really anything more complicated than an image or pdf]

Additionally, if you remember I mentioned that it is a platform focuses on display and web publishing, not asset management, and that’s really how it had been used by our institution. And because of this our backend had become a real hodgepodge of collections and exhibits and stand alone objects that were thrown up to make stuff available but not really with a mindful intention of managing robust, large digital collections with complex objects.

Finally, a major limitation was Omeka’s inability to serve as a unifying platform for collections and I mean this at a couple different levels. **One, it couldn’t easily and clearly bring together the different contributing institutions** that live under the umbrella of UCSF, including San Francisco General Hospital (which maintains its own website), and the Mount Zion campus (which had digital objects on oac). **Two, because of technical limitations**, we couldn’t easily migrate the material that lived on project sites into Omeka, so what we were left with were several stand alone sites along with the Omeka site that we were trying to get users to navigate through, and that was becoming really confusing.

Nuxeo and Calisphere offered solutions to a lot of these issues, including the ability to unite collections under one **UCSF umbrella** and take that material that lived on siloed sites and put it in conversation with other collections in a much more search friendly interface, **manage complex objects and different file types** (especially the high res preservation copies) and **CDL was going to be there to offer support**, so we could actually push the boundaries of the system in a way our staff limitations had not allowed us to do with Omeka.

So with all this in mind in 2015 we decided to migrate as much of our material as was possible into Nuxeo with public display on Calisphere

One of the first steps was migrating material from the stand alone sites, which was relatively straightforward. We had the tifs that we wanted to manage in Nuxeo which would be automatically served as low res jgps on Calisphere, so we sent those to CDL on harddrives, which CDL then loaded into Nuxeo under the appropriate project folder, and CDL and our team did some metadata field matching and then did a mass migration of that data from one site to the other.

We did _some of that same process with the Omeka material but then we started to run into some issues_. The first was that when our team and CDL bulk pulled files from Omeka, **all they got were low res access copies** being generated by Omeka. These were not the high res tifs that we want to manage in the long run. So we had to go back to our campus server and track down these tifs using the file
name and then go through the process of matching these tifs with the affiliated metadata on Omeka, using the file name to match items. This was eventually effective but not really efficient and we definitely learned some lessons and we’re trying to implement those now with an eye toward future migrations.

Another large issue for us was the fact that a lot of the material on Omeka had very limited metadata, sometimes just a title and an unhelpful file name, so things like “building” with a file name of “building”. I imagine this was done to serve material to researchers, so again that focus on publishing and less on asset management in Omeka. So years later, we didn’t know really basic information like which collection the image came from.

So for this, we created an intern project of tracking down some of that material and having them update metadata. So this was effective but time and staff intensive. To help manage that time and staff investment, we used this project to reevaluate some of the material and decide if it was worth migrating for public display. We knew we had the tifs for preservation on our server but we made decisions about some of those ”buildings” images and they just didn’t make the cut for migration.

This whole process really helped us establish better metadata standards, file naming conventions, and digitization best practices guides, again with an eye toward future migrations; really having an understanding that this is an iterative process that we need to be prepared for for long term stewardship of digital items.

At this point we’ve successfully migrated all of our omeka material and the majority of the project sites onto Nuxeo and started building new collections. From a little over 2000 items on omeka and a few hundred on project sites to almost 30,000 on Calisphere with definite plans for growth in the future.
Crossing the Knowledge Gap: Effective Documentation’s Role in Creating Digital Preservation Workflows

Victoria (Tori) Maches
MLIS student, UCLA
The problem

- Need tech documentation to start program, document processes to maintain it
- Tech documentation assumes background archivists may lack
- Gaps in documentation affect developing programs
- Clear documentation needed to get started and maintain program
Steps for new practitioners

- The focus: address knowledge gaps, develop skills
 - Ask questions
 - Tutorials and alternate documentation
 - Look outside archives-specific contexts
 - Document everything
 - Pay attention to what you don’t know
Steps for documentation creators

- The focus: What would you have wanted to know?
 - Step-by-step instructions
 - Explain how/why it works
 - Screenshots/photos
 - Take advantage of born-digital medium
 - Assume inexperienced audience

- Keep future practitioners in mind

"BitCurator Quick Start Guide" by the BitCurator Consortium, used under CC BY-SA 4.0
Conclusion

- Need clear documentation to create workflows, maintain program
- Start now and future documentation will fill these gaps
- Combine short- and long-term approaches
Born Digital: Care, Feeding, & Intake Processes at LOCKSS

Mary-Ellen Petrich - @mellen22
Digital Preservation Specialist, LOCKSS
Stanford University Libraries

Society of California Archivists
April 2017
me

• engineering -> library science

• hired to catalog the preservation collection and test software

• developed processes, and scripts that direct the preservation process at LOCKSS
LOCKSS?

• lots of copies and communities keep stuff safe
• a LOCKSS network is a peer-to-peer network
• websites are not predictable
• LOCKSS addresses issues of data relationships and metadata
inception

• Founded in 1999
• By a serials librarian and a computer scientist

• print journals → Web

• conserve library’s role as preserver
 • collect from publishers’ websites
 • preserve w/ cheap, distributed, library-managed hardware
 • disseminate when unavailable from publisher
what is a LOCKSS network?

- Peer-to-peer network of web servers
- Journals and other archival information on the Web
- A set of independent, low-cost, persistent Web caches that cooperate to detect and repair damage to their content by voting in “opinion polls.”
lots of LOCKSS

- LOCKSS (principle)
- LOCKSS (program)
- LOCKSS (software)
- Global LOCKSS Network (GLN)
- Private LOCKSS Networks (PLNs)
- CLOCKSS
Private LOCKSS Networks (PLNs)

• what are they?
 • community of interest
 • jointly designate content
 • run distributed nodes
 • establish governance
 • preservation via diverse technologies, institutions, networks
Controlled LOCKSS (CLOCKSS)

• what is it?
 • library/publisher partnership
 • preserve the scholarly record
 • 12 globally-distributed nodes
 • **dark** until no longer accessible
 • triggered content world-accessible
Global LOCKSS Network (GLN)

- ~150 Libraries, >600 Publishers
- released:
 - ~9,000 journals
 - ~110,000 Archival Units (AU)
 - ~15-20 terabytes
- dark web / subscription materials
- what is it?
 - conserve library’s role as preserver
 - collect from publishers’ websites
 - preserve w/ cheap, distributed, library-managed hardware
 - disseminate when unavailable from publisher
collection methods

• WARC
 • Hand-crafted
 • Quick & Dirty
 • Small single journals

• File Transfer
 • FTP or snail mail
 • Publisher Driven

• Harvest
 • Acting like a browser
 • LOCKSS Driven
 • Preserves file relationships
 • Parses out metadata
publisher setup for harvest

- Archival Unit (AU)
 - Volume of a Journal
 - Volume or Chapter of a Book
 - A closed collection of documents
 - Up to ~500 GB
- Subscription
 - IP Address access
- LOCKSS Permission Statement
 - Site, Journal, or Volume level
 - *LOCKSS system has permission to collect, preserve, and serve this Archival Unit*
- Manifest page
 - List of journal issues
 - Bottom of the tree
publisher plugin
to the LOCKSS daemon

• Collection
 • Start URL
 • Link extraction
 • Crawl Rules - Exclude & Include
 • Crawl filters

• Validation
 • Mime type
 • Html error codes
 • Login page identification
 • Substance checking

• Metadata Collection

• Polling filters
title database (tdb file)

- catalog records ++
- basic metadata
 - publisher, title, publication year, issn/isbn
 - in case metadata is missing
- parameters for each AU
 - url & volume or year or others
 - defines the AUId
 - passes parameter values to the publisher plugin
 - unique key
- status
 - human readable preservation stage
 - LOCKSS daemon: recognize, crawl, don’t crawl
digital workflow

- **doNotProcess** ignore this AU
- **doesNotExist** AU does not exist
- **expected** not known if AU exists on the publisher's web site
- **exists** known that AU exists on the publisher's web site
- **manifest** permission page and manifest verified
- **wanted** higher priority for testing
- **testing** someone is testing this AU
- **notReady** testing has failed
- **ready** testing is completed and the AU is ready for release
- **released** released for collection
- **down** no longer collected, unavailable through the publisher
- **superseded** this volume is no longer collected, but is available with another platform
publisher:
 name = Taylor & Francis;
 info[tester] = 6
>
plugin = org.lockss.plugin.taylorandfrancis.TaylorAndFrancisPlugin
param[base_url] = http://www.tandfonline.com/
{
 title:
 name = Archives and Manuscripts;
 issn = 0157-6895;
 eissn = 2164-6058
 param[journal_id] = raam20
 implicit < status ; year ; name ; param[volume_name] >
 au < manifest ; 2012 ; Archives and Manuscripts Volume 40 ; 40 >
 au < down ; 2013 ; Archives and Manuscripts Volume 41 ; 41 >
 au < down ; 2014 ; Archives and Manuscripts Volume 42 ; 42 >
 au < down ; 2015 ; Archives and Manuscripts Volume 43 ; 43 >
 au < manifest ; 2016 ; Archives and Manuscripts Volume 44 ; 44 >
}
new material

- add new publishers & journals
- new volumes to add, predictable & unpredictable
- find new manifest pages (1x/wk)
- content releases to GLN (~1x/mo)
preventative maintenance

• old volumes have moved, developed problems
• merge metadata for multiple networks
• compare the catalog to the network
• QA. typos, duplicate ISSNs, duplicate volumes, malformed parameters
testing

• Test content against software
 • two servers
 • 12 hours apart

• Errors
 • No subscription
 • Permission statement missing or malformed
 • No volume exists
 • Malformed lists of issues, articles, or links
 • URL redirects (journal has moved)
 • No articles
 • HTML crawl errors (can’t access, taking too long, missing, moved)
 • Transient changes, rotating ads, dynamic content, dynamic file generation, watermarking
LOCKSS?

• lots of **copies** and **communities** keep stuff safe
• a LOCKSS network is a **peer-to-peer** network
• websites are **not** predictable
• LOCKSS addresses issues of **data relationships** and **metadata**
have we collected it?

• How do we know?